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Abstract

Cellular automata can be designed that allow the simulation of a large variety of polymer
problems including isolated polymers in dilute solution, polymers in high density melts and
polymers embedded in media. The two-space algorithm is a particularly efficient algorithm for
polymer simulation that is easy to implement and generalize on both conventional serial
hardward and Cellular Automaton (CA) Machines. We describe the implementation of this
algorithm and two applications: two dimensions (2-D) melts and polymer collapse. Simula-
tions of high density melts in 2-D show that contrary to expectations polymers do not seg-
regate at high density, there is significant interpenetration as there is in 3-D. Polymer collapse
is studied in the regime far from equilibrium. Collapse is found to be dominated by migration
of the chain ends. The kinetic process of collapse can systematically and reproducibly restrict
the possible conformations that are explored during protein folding. This suggests that the
kinetics of collapse may help lead to the desired folded conformation of proteins. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction to polymer simulation

Polymers are molecules formed out of long chains of atoms that are generally
recognizable as a sequence of units called monomers. Biological polymers include
proteins, DNA, and polysaccharides. Artificial polymers include polystyrene and
polyethylene. Polymers are often found dissolved in liquids. The dynamic properties
of polymeric systems are of intense academic and industrial interest [6,7]. The key
problem is understanding how their behavior arises from their structure. The high
number of conformations of long polymers make conventional computer simula-
tions prohibitive.

The idea of a Cellular Automaton (CA) is to think about simulating the space
rather than the objects that are in it [1,9,19,20]. Standard CA which update a single
cell on the basis of the value of cells in its neighborhood are not well suited to the
description of systems with constraints or conservation laws. For example, if we
want to conserve the number of ON sites (e.g. particles) we must establish a rule
where turning OFF one site is tied to turning ON another site, corresponding to
movement of the particle. Polymeric systems are such systems because they require
conserving the number of particles (monomers), as well as the bonds between
monomers along the polymer chain which are generally assumed not to break during
the course of a simulation. One way to impose particle conservation is to use a lattice
gas [8]. We will use a different modification of CA called Margolus dynamics which
can be more easily generalized to other conservation laws [19]. The idea is to par-
tition the space into plaquettes. The CA rule describes the update of a plaquette,
rather than a single cell. Then, a conservation law that holds in the plaquette (e.g. the
number of ON sites) also holds globally. For example, the plaquettes might be 2 x 2
regions of cells. After each update of the space, the partition of the space into pla-
quettes is shifted. This restores the cellular periodicity of the space. In a sense,
Margolus dynamics is a cellular version of domain decomposition strategies for
parallel simulation. Indeed, the CA based simulation strategies we describe in this
article can be generalized for the simulation of arbitrary polymer models as domain
decomposition strategies [13].

In this article we describe dynamical models in the class of Cellular Automata that
represent the highly successful “abstract” models for long (high molecular weight)
polymers. The dynamical models are simple to implement, fast in execution on
conventional computers, easy to parallelize, and readily adapted to introduce vari-
ous features of particular problems in the study of polymers. We use these algo-
rithms in two applications: the properties of high density polymer melts in two
dimensions (2-D), and the collapse of a polymer from an expanded to a globular
form. A third application — the diffusion of polymers through a field of obstacles, is
described in other articles.

We will be primarily concerned with the scaling behavior of the properties of long
polymers as a function of polymer length N [6,7]. This behavior should not be
sensitive to the chemical composition and therefore the abstract model of polymers
will be a useful model of the behavior of real polymers that are long enough so that
the effect of local structure is unimportant. The scaling theory of polymer structure
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and dynamics is one of the great successes of simple concepts in understanding
complex systems. In brief, according to this theory, any characteristic size of the
polymer should scale as R ~ N”, where v = 3/(d + 2) is the Flory exponent, and dis
the dimension of space. The diffusion constant D and internal relaxation time 7 are
related by © ~ D/R? and the relaxation time scales as t ~ N?, where z = 2v + 1 when
hydrodynamics is not included (Rouse relaxation) and z = 3v when hydrodynamics
is included (Zimm relaxation).

2. Monte Carlo polymer simulation

Conventional simulations of polymer systems are of two types: molecular dy-
namics, and Monte Carlo [1,2,6,7]. Molecular dynamics simulations are suggestive of
‘realistic’ Newtonian dynamics of polymers and are implemented by moving all at-
oms with small steps according to forces calculated from modeled interatomic forces.
Monte Carlo represents the dynamics of an ensemble of polymers by steps which
take into account thermodynamic transition probabilities. Both techniques give the
same results for structure, conformational change and diffusion. All atoms can be
moved in parallel (at the same time) in molecular dynamics, which therefore appears
to be ideally suited for parallel processing computers. However, with a processor
attached to each atom, calculation of the forces requires a large number of com-
munications between processors. Connections between processors are typically the
limiting feature of parallel computers. Domain decomposition methods can be used
for parallel simulations of both Monte Carlo and molecular dynamics. In this article
we focus on Monte Carlo simulations using particularly efficient CA based algo-
rithms.

Monte Carlo dynamics correspond to diffusive dynamics that do not conserve
momentum. More formally, the dynamics allows local steps in the space of poly-
mer conformations. Even if these local steps do not follow the same distribution as
the real dynamics, the long range motion is consistent with the real dynamics when
diffusive motion dominates the system behavior. Such a model is reasonable in the
dissipative fluid environment of polymers when we are interested in describing
large changes in polymer conformation, or diffusion of the polymer as a whole. It
also provides correct results for the ensemble of polymer conformations and thus
for average structural properties such as the spatial extent of the polymer. How-
ever, it should be noted that the diffusive dynamics corresponds to Rouse relax-
ation since it does not include correlations in motion of polymer segments arising
from the motion of the fluid. The motion of the fluid which couples the motion of
different parts of the polymer should be treated using hydrodynamics. These cor-
relations are included approximately in Zimm relaxation but simulation schemes
for this type of dynamics have not been developed, and we will not address this
question here.

Monte Carlo can be more efficient than molecular dynamics because it, in effect,
allows larger time steps in simulations. However, large movements of monomers
cause difficulties for parallelization due to the problem of accounting for the joint
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effects of simultaneous displacements. In solving this problem we will motivate the
introduction of our CA models.

In a Monte Carlo simulation of abstract polymer structure and dynamics [1,2], a
long chain of monomers is represented by the coordinates of each monomer. There
are many different methods for describing the polymer. However, quite generally, a
simulation step consists of selecting a monomer, monomer i, from the polymer chain
and performing a move subject to the constraints: (1) The move does not “break”
the polymer connectivity — monomer i does not dissociate itself from its nearest
neighbors along the chain; and (2) The move does not violate excluded volume —
monomer i does not overlap the volume of any other monomer j.

These two constraints, connectivity and excluded volume, are sufficient to guar-
antee that the structural properties of a long polymer will be found. In order to study
the dynamics of a polymer we must also guarantee that the steps taken are local steps
in the space of polymer conformations. This is generally satisfied when monomer
steps themselves are local. However, we must also be sure that the polymer cannot
pass through itself. For the models we will use it is easy to verify that this cannot
happen.

To motivate our dynamic models, we consider the problem of performing a
polymer simulation using a parallel machine. In naive parallel processing, a set of
processors would be assigned one-to-one to perform the movement of a set of the
monomers. Each processor does not know the outcome of the movement of the other
monomers, it can only know their position before the current step. With the two
constraints (1) and (2) it would be impossible to perform parallel processing in this
way since moving different monomers at the same time is likely to lead to dissoci-
ation or overlap. Dissociation only restricts the parallel motion of nearest neighbors.
However, the excluded volume constraint restricts the parallel motion of any two
monomers, presenting a fundamental difficulty for parallel processing. A general way
to overcome this difficulty is by recognizing that polymer interactions are local in
space. The polymer can coil so as to bring any two monomers into contact, yet, at
any particular time, the only possible interactions are between monomers which are
nearby in space.

3. Cellular automata for polymer dynamics [1,13,15,17,18]

A CA Margolus dynamics for the simulation of polymers is illustrated in Figs. 1
and 2. Each cell can have two values (ON and OFF). ON cells represent monomers,
and a polymer is described by a set of monomers which touch either at corners or on
edges of the cells. In a chain polymer (Fig. 1) each monomer has two such neighbors
except for the ends which have only one. The general strategy for constructing such a
CA begins with the recognition that the update rule only depends on the local spatial
conformation. Bonds between monomers should be specified solely by the relative
position of the monomers. Thus, we think about a bonded neighbor as a monomer
that is closer than a certain distance. Any other (non-bonded) monomer must be
farther away. By imposing this as a constraint, we are imposing an excluded volume
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Fig. 1. Illustration of a cellular polymer model. ON cells represent monomers. In this model monomers
are considered attached if they are touching by either faces or corners.

between non-bonded neighbors that is larger than a single cell. We call the space
around a monomer in which its bonded neighbors are located the bonding neigh-
borhood. It can be shown that in any such model, in 2-D or 3-D, the polymer chain
cannot pass through itself.

In Fig. 1 monomers which touch either at corners or on edges of the cells are
bonded. The bonding neighborhood is a 3 x 3 region around each monomer. For a
chain polymer, each monomer has two such neighbors except for the ends which
have only one.

In updating the polymer, we could use the usual Monte Carlo approach. We
would pick one monomer, pick a compass direction (North East West and South
(NEWS)) and move the monomer in the selected direction if the constraints of
connectivity and excluded volume allow. The connectivity constraint prevents a
monomer move from breaking a bond. The excluded volume constraint prevents a
non-bonded monomer from entering the bonding neighborhood. Both constraints
may be imposed by the condition that the move does not change the monomers in
the bonding neighborhood.

For the CA, rather than picking one monomer to move, we select a sub-lattice of
cells separated by 3 cells in each direction as shown in Fig. 2. If a monomer is lo-
cated in one of these cells, we chose a compass direction at random to move it, and
move it if permitted by the constraints of connectivity and excluded volume. In the
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Fig. 2. Illustration of the implemenation of Margolus Dynamics on the Cellular Automaton of Fig. 1.
Moves can only originate in the squares in the middle of 3 x 3 neighborhoods separated by buffers. Moves
are shown by the arrows. Moves which are not allowed are marked by an “X’ in the target square.

figure, steps that are not allowed are indicated by Xs. A movement of a monomer
corresponds to an update of the 3 x 3 plaquette around a selected site; the infor-
mation for the update is contained in a larger 5 x 5 region. All 3 x 3 plaquettes can
be updated simultaneously. Finally, a new sub-lattice is picked at random for the
next update.

In the simulation of long polymers, it is important to have a model where the
behavior of a long chain is realized for moderate numbers of monomers. As for real
polymers, the long-chain behavior is reached when the details of the local prop-
erties become unimportant. Thus we choose the local dynamics to minimize the
influence of local constraints on the dynamics. There are two characteristic types of
local dynamical behavior of a polymer — motion perpendicular to the polymer
contour, and motion along the polymer contour (which involves local length
changes). An effective approach to minimize the influence of local structure is to
allow local changes in polymer length. This is not possible in the CA rule just
described.

To solve this problem we want to allow the monomers that are bonded to each
other to separate by one lattice space. This implies that we should increase the size of
the bonding neighborhood to be a 5 x 5 region in 2-D, or a 5 x 5 x 5 region in 3-D.
This choice of bonding neighborhood is convenient, but others could be specified as
well. As before, we do not allow monomers to violate excluded volume by entering a
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bonding neighborhood, and we do not allow monomers to break a bond by leaving.
A monomer move is accepted if monomers are not removed from nor added to the
bonding neighborhood by the move. The larger bonding neighborhood allows more
flexibility to the motion because adjacent monomers can move towards and away
from each other, enabling local contraction and expansion of the polymer. We call
this algorithm the one-space algorithm in order to contrast it with the two-space
algorithm discussed next.

4. Two-space algorithm [1,13,15,17,18]

The problem of polymer flexibility also has a second solution — the two-space
algorithm — that has some additional advantages. The simplest way to describe the
two-space algorithm in 2-D is to consider a polymer on two parallel planes (Fig. 3).
The monomers alternate between the planes so that odd-numbered monomers are on
one plane and even-numbered monomers are on the other. The neighbors of every
monomer reside in the opposite space. The bonding neighborhood is a 3 x 3 region
of cells in the opposite space. This is the region of cells in which only its neighbors
reside. To construct a polymer we place successive monomers so that each monomer
has its nearest neighbors along the contour in its bonding neighborhood. The dy-
namics is defined, as before, by requiring that a monomer move be allowed only if its
movement to a new position (selected at random from NEWS directions) does not
add or remove monomers from its bonding neighborhood (Fig. 4).

In this model an additional flexibility is achieved because neighbors can be “on
top of each other” so that even the 3 x 3 bonding neighborhood allows local ex-
pansion and contraction. Even more interesting, it is possible to move all of the
monomers in one space at the same time because both connectivity and excluded

_/

/77 7 7 7 7 7

#

R # i

Fig. 3. Schematic illustration of a two-space polymer. In 2-D the two spaces are parallel planes. Mono-
mers on the upper plane are shown as circles with dark shading, monomers on the lower plane are shown
as circles with light shading. Along the polymer the monomers alternate spaces so that odd monomers are
in one space (the light space) and even monomers in the other space (the dark space). Bonds are indicated
by line segments between monomers. Monomers are bonded only to monomers in the other space.
The ‘bonding neighborhood’ of each monomer is a 3 x 3 region of cells located in the opposite plane.
The bonding neighborhood of the dark monomer marked with a dot is shown by the region with a
double border. The two neighbors of this monomer, both light monomers, are located in the bonding
neighborhood.
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Excluded
Volume

Connectivity

Fig. 4. lllustration of the movement of a monomer in the two-space algorithm. The movement of a light
monomer requires checking connectivity and excluded volume in the dark space. The picture illustrates a
move where the light monomer is to be moved to the right. To ensure that connectivity is not broken we
check that no monomers are left behind. This is equivalent to checking that there are no dark monomers in
the three cells marked with Xs on the left. To ensure that excluded volume is not violated is equivalent to
checking that there are no dark monomers in the three cells marked with Xs on the right. If there are no
monomers in these cells, then no monomers are removed from or added to the bonding neighborhood of
the light monomer as a result of the move. In the picture the move is allowed.

volume are implemented through interactions with the other space. Thus 1/2 of the
monomers may be updated in parallel.

To show that all the monomers in one space can be moved in parallel, we must
show that their motion cannot result in either breaking the polymer or violating
excluded volume. Since each monomer move preserves its bonded neighbors, the
polymer cannot be broken. Excluded volume is different for two monomers within a
space and for two monomers in opposite spaces. For two monomers in opposite
spaces, excluded volume prevents monomers from entering each others’ bonding
neighborhood. For two monomers in the same space excluded volume is just the
requirement that two monomers do not move onto the same site. They can be ad-
jacent, since they are not within each others’ bonding neighborhood. In a proof by
contradiction that two monomers cannot move onto the same site, assume two
monomers were to move to the same site. In this state they will have the same
bonded neighbors. Since they start with different bonded neighbors, and the algo-
rithm prevents monomers from changing their bonded neighbors, this cannot hap-
pen. There is only one exception, which we may avoid (or treat specially). For a
polymer of length three the two end monomers have the same neighbor and they are
not prevented from landing on the same site.

In order to preserve detailed balance, which is desirable for a Monte Carlo al-
gorithm, we must choose at random which of the two planes to update at each step.
The two plane algorithm may be implemented in 3-D by considering the polymer to
be in a double space.

5. Advantages of the two-space algorithm and implementation details [13]

There are four ways in which the two-space algorithm excels: step speed (small
number of computer operations per step), relaxation rate (small number of monomer
steps per polymer relaxation time, as given by the small prefactor 7, in t(N) ~ 7;N?),
inherent parallelism, and simplicity. The two-space algorithm is fast even on serial
machines. The simplicity of the two-space algorithm can be appreciated when gen-
eralizing it to apply it to various problems.
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The direct parallelism of the two-space algorithm lends it to implementation on a
variety of computer architectures. Because we can update half of the polymer at a
time there are two different ways to implement parallelism: space partitioning and
polymer partitioning.

Space partitioning is the usual CA assignment of processors to different regions of
space. Polymer partitioning is the assignment of processors to different parts of the
polymer. Spatial assignment is particularly convenient when a simulation is per-
formed with a high density of monomers. For example, there is considerable interest
in simulations of entangled polymers at high densities (polymer melts). Polymer
assignment is convenient when the polymer occupies only a small fraction of the
space. This is the case for expanded isolated polymers, or problems that might in-
clude a single polymer moving in a static matrix.

Within each of the parallelization schemes, processor assignment may take ad-
vantage of full parallelization (fine graining), or task aggregation (coarse graining)
may be used. Typically, parallel architectures suited for fine-grained simulations
require fast intersite communication and large numbers of processors, while the
processing elements themselves do not necessarily have to be very powerful. If the
number of processors is too small a compiler may create “virtual processors” al-
lowing the user to treat each site as being assigned to a separate dedicated processor.
When coarse graining is used a whole region of lattice or of the polymer is assigned
to a single processor, thus requiring fewer more powerful processors.

In fine-grained space partitioning each processor is assigned to one double-space
lattice site. When coarse graining is used, a region of lattice is assigned to a pro-
cessor. Communication is necessary to transfer information about the boundary
regions and to transfer monomers across the boundaries of the spatial regions be-
tween processors.

Similarly, for polymer partitioning, fine-graining would assign one monomer to a
processor. When coarse graining is used a group of monomers is assigned to a
processor. The assignment may be of successive monomers along the chain or they
may be gathered together under some other rule. In polymer partitioning there is
need for interprocessor communication to construct a poster space — a data structure
which is indexed by spatial location and represents by occupancy of a site the spatial
locations of the monomers — to which the locations of monomers are “posted” by the
processors which are keeping track of the locations of specific monomers. Thus far
polymer partitioning of the two-space algorithm has not been implemented on
parallel architectures, but the algorithm that would be used has been implemented
on serial machines.

In the following sections we describe details of implementation of the two-space
algorithm for both fine and coarse graining in space partitioning [15].

5.1. Fine-grained space partitioning
Fine-grained implementation assumes each lattice site is assigned a dedicated

processor, thus allowing the algorithm to be easily implemented on SIMD machines.
The system is updated in three steps:
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Fig. 5. In fine-grained simulation one processor is assigned to a site. Assume the processor assigned to X
has a monomer in its odd plane that has elected to move westward. In order to make the step, processor X
has to determine that there is nothing in the even plane of processors C1, C2 and C3 (to preserve con-
nectivity) and nothing in the even plane of processors V1, V2 and V3 (to preserve excluded volume).

1. The even or odd plane is selected at random;
2. For each occupied site one of four compass directions is chosen at random;
3. A Monte Carlo step is performed subject to two constraints in the other plane:

connectivity and excluded volume (Fig. 4, see also Fig. 5).

For each step a processor (lattice site) requires communication with 6 other
processors in order to determine whether the move is allowed. The total number of
communications depends on the connectivity of the processors. Assuming single step
communication with any of the eight nearest neighbors, the total number of com-
munications is 9. If the same operations are applied to all processors the total
number of operations to enable movement of monomers in all four directions is 36.
This number can be decreased by gathering the information in two stages as follows
(see Fig. 5). First the data from C1, C2 and C3 are combined into C2 and V1, V2 and
V3 are combined into V2, totaling four communications per plane update. Then the
information may be transferred in three steps to X. Additional optimization is re-
alized by noting that the same information may be used either at X for moving west
or at Y for moving east. Thus data is collected in vertical and horizontal strips. The
result of vertical (horizontal) data gathering is shifted left and right (up and down).
The total number of communications per plane update is 4 + 4 % 3 = 16, compared
to the previous 36. Note that with this optimization only (NEWS) communications
are needed. Finally, four more communications are needed to move the monomers
for a total of 20. The number of communications is emphasized here because the
communication to computation ratio is generally large, and, therefore, minimizing
communications is extremely important. In the fine-grained implementation com-
putation requires only random number generation, evaluation of a compound log-
ical expression using communicated data, and clearing a variable when a monomer
‘leaves’ the site.

The fine-grained approach is especially efficient when dense systems are simulated.
A illustrative test simulation performed some years ago is shown in Fig. 6 which
compares the performance of the algorithm on a parallel computer (MP-1) vs. a
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Fig. 6. Illustrative comparison (performed some years ago) of serial (IBM RS/6000 320H) and parallel
(MP-1) architectures performing increasing density simulations of 104 space updates of a 128 x 64 lattice.
List processing was used on the serial computer, fine-grained space processing on the MP-1.

serial machine (IBM RS/6000) by showing time required to execute 10* space up-
dates as a function of a number of polymers of length 30. As the density of the
system increases, the advantage of a parallel simulation becomes more and more
pronounced.

Another kind of parallelization arises when we consider that the existence of a
monomer on the lattice may be represented by only one bit. A lattice plane of the
algorithm can be represented as a single-bit plane. It can be seen that more than one
system can be simulated simultaneously (see Fig. 7) by programming the algorithm
as a number of bitwise operations where one plane consists of the kth bits of all of
the variables used to represent the space. This bit-wise parallelism enables an internal
form of distributed simulation. For example, if the largest integer type on a com-
puter is 64 bits (as in MP-1), then 64 systems can be updated in a single step. The
speedup, however, is much less. We achieved a 12-fold speed up on the MP-1 due to
the two factors: Communication time for 64-bit numbers is larger than it is for a 32-
bit number, and the generation of a 64-bit random number takes twice as long as for
a 32-bit number.

5.2. Coarse-grained parallelism

In architectures with powerful individual processors, task aggregation by coarse-
graining enhances the performance. This is particularly important for machines with
relatively slow communication and networks of workstations.

For coarse-grained space partitioning, each processor is assigned to a region of
the lattice rather than to a single site. The basic structure is shown in Fig. 8 (for
simplicity it is assumed that these regions are of rectangular shape). Individual
processors are assigned to regions X, N1-N8. The following steps update a space:
1. One of two spaces is chosen at random.

2. All processors synchronize.
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Fig. 7. Bit-plane parallelism on SIMD computers makes use of each bit of the longest data type for an
independent simulation (see text).

3. Each processor updates the piece of lattice it is assigned to by either scanning all
lattice sites in the region or processing the list of monomers that belong to that
region. The former method is efficient for dense systems and is similar in its im-
plementation to fine-graining. The latter better for to dilute systems.

4. Processor X receives information from its 8 neighbors N1-N8 about moves per-
formed on monomers within two lattice units from its boundaries (shown in gray
in Fig. 8). In list processing, monomer lists are updated to keep track of mono-
mers entering and leaving the region.

This method does not require synchronization before each site update, but rather

only before the update of a whole space. Therefore this implementation of the al-

gorithm where each processor works independently during the space update is well
suited to MIMD architectures. Since communication between processors only
describes the boundary regions, the frequency and amount of communication is
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Fig. 8. Schematic drawing of the processor assignment for coarse grained simulations by space parti-
tioning (see text).

reduced. Moreover, all of the information transferred between two processors before
each space update may be combined into one message. However, adequately fast
synchronization is required. Unlike SIMD, where each step is synchronous, explicit
synchronization must be performed between space updates in a MIMD architecture
and must be taken into account when performance issues are considered.

6. Tests of the two-space algorithm

To test the two-space algorithm we measure structural and dynamic properties.
The simulations we perform for these tests are in 2-D. We measure the characteristic
size of the polymer as given by the radius of gyration R,(N;1):

Ry(N: =1 3 (n0) = rn )
O =3y 20

To initialize the simulation we start from a straight polymer. The test shown in Fig. 9
consists of a two-dimensional polymer simulated with N = 140 monomers. We see
that after a few steps the polymer fluctuates around an average polymer size that we
can calculate as a time average, R, = 18.39, indicated by the horizontal line. It is
better to leave out the first part of the simulation in calculating the average.

To see how R,(N) varies with N, we use a log-log plot (Fig. 10) which gives a
straight line for large NV. Thus it follows a power law behavior where the slope of the
line is the value of the exponent. The exponent is in agreement with the expected
result Ry(N) ~ N”, v=0.75 is the Flory exponent in 2-D.

(1)
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Fig. 9. Plot of the characteristic polymer size, the radius of gyration, R,(¢) as a function of time in a Monte
Carlo simulation of the two-space algorithm. The two-dimensional polymer simulated has N = 140
monomers. The simulation starts from a completely straight conformation which has an unusually large
size. After relaxation, the radius of gyration fluctuates around the average value, R, = 18.39 indicated by
the horizontal line. The characteristic time over which the polymer conformation relaxes 7 is the corre-
lation time of the radius of gyration indicated by the horizontal bar. The values plotted of the radius of
gyration are sampled every 1200 plane updates. There are about 50 samples in a relaxation time.

100 -
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Fig. 10. Plot of the average radius of gyration as a function of polymer length for the two-space algorithm
in 2-D. The average values are obtained by simulations like that shown in Fig. 9 using 100,000 samples and
without including the first 100 samples. The horizontal axis is the number of links, N — 1 in the chain. The
line in the figure is fitted to the data above N = 10 and has a slope of 0.756. This is close to the exact
asymptotic scaling exponent for long polymers, v = 0.75.

The second test is to evaluate the dynamics of relaxation of the polymer. We can
see from Fig. 9 that there is a characteristic time over which R,(N; ¢) fluctuates shown
by the horizontal bar on the plot. The values plotted of the radius of gyration are
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Fig. 11. Plot of the relaxation time 7 of polymers as a function of the number of links N — 1 for the two-
space algorithm in 2-D. The line in the figure is fitted to the last four points that are relaxation times for
polymers longer than N = 100. The slope of this line is 2.51, which is consistent with the exponent expected
for Rouse relaxation, 2v + 1 = 2.5.

sampled every 1200 plane updates. There are about 50 samples in a relaxation time.
Over shorter times, R,(N;¢) values are correlated. Over longer times they are inde-
pendent. This characteristic time is the relaxation time, t(N). To find a value for the
relaxation time we study the correlation of R,(N;¢) (for simplicity the dependence on
N is not indicated):
AR ey — (Rl B0~ R)(Rel0) ~ R9).
((Ry(1) = Ro)’) 2)

R, = <Rg(t)>'

The averages are over time. This measures the relationship between R,(f) and
R, (t+ At), as a function of Az. The behavior of the correlation function can be
readily understood. For Ar = 0 it is one. For large A¢, when the value of R, (7 + At) is
independent of R,(¢), the average in the numerator is the product of the averages of
the two factors independently. Since the average of either factor is zero, the corre-
lation function is zero. t(N) is the time at which the correlation falls to 1/e.

A plot of the characteristic relaxation time 7(N) as a function of the polymer
length is shown in Fig. 11. 7(N) increases with length and for long enough polymers
it agrees with t©(N) ~ N?, z = 2.5. This is the Rouse prediction expected to apply to
long polymers when the fluid motion (hydrodynamics) is not included, and therefore
is the correct result for our simulations.

7. Application to 2-D melts

A unique feature of polymer solutions in 3-D compared to other states of
condensed matter is the existence of a semi-dilute regime of polymer concentration
in which chains interpenetrate and become entangled. This happens when the
volume fraction ¢ of the space occupied by a polymer exceeds the overlap volume
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fraction ¢* which can be arbitrarily small for long polymers (c* ~ N/R{ ~ 1/N®~!,
where N is the number of monomers, R, ~ N¥ the radius of an isolated chain, v
the Flory exponent, and d is the dimension of space). In contrast, it is assumed
that interpenctration does not take place in 2-D. The chains are believed to be-
come progressively segregated into compact disks as the concentration is increased
above ¢* [3]. We show by extensive computer simulations that the 2-D melt be-
havior cannot be so simply described [13,14]. The actual behavior, whose precise
nature remains undetermined, is intermediate between segregation and interpene-
tration.

As melt density increases, the radius of gyration R, of a polymer decreases. This
can be understood in various ways. In 3-D the decrease in size results from inter-
penetration which prevents (screens) interactions between monomers of the same
polymer. This results in a shrinkage of the polymer to a size characteristic of a
random walk, R, ~ N", v =1/2, which is smaller than the random walk with ex-
cluded volume, where v = 0.6. Thus, for interpenetrating polymers the structural
properties correspond to polymers without excluded volume. This is quite different
from what is thought to occur in 2-D. In 2-D polymers are believed to form col-
lapsed disks implying that the excluded volume plays an essential role in determining
the size of the polymer. However in 2-D there is a coincidence of two theoretical
exponents for the radius of gyration. Both a collapsed disk and a random walk have
the same value of v = 1/2. This opens the possibility that more subtle effects can play
a role in the polymer structure.

We performed detailed computer simulations of 2-D polymer solutions on a
128 x 64 lattice with periodic boundary conditions. The maximal concentration
(area fraction) allowed by the two-space algorithm is p,,,, = 3/4, because of local
excluded volume constraints. Therefore the concentration in the simulation was
defined as ¢ = p/puax = (4/3) x ON /(128 x 64), where Q is the number of polymers
on the lattice. Runs in the concentration range 0.163 < ¢ < 0.651 and for chain
lengths 50 < N < 333 were performed.

Figs. 12 and 13 display various properties of the system discussed in the following
paragraphs. At high densities R, follows a power law scaling as a function of N. The
exponent can be seen from Fig. 12(a) which shows a nearly constant Ré /N consistent
with either random walk or disk. As a function of density in Fig. 12(b) the polymers
decrease rapidly in size.

A first indication that the polymers do not become compact disks arises by
considering the polymer size at maximal density. In Fig. 12(b) the horizontal axis is
the concentration ¢, so the maximal possible value corresponds to unity. At high
density Ré /N must equal a universal constant. This constant can be calculated for the
compact disk as well as for the random walk. For a compact disk at the maximal
density p,,,, the number of monomers in the polymer is the area of the disk times the
maximal density

N = Apmax = TERZ axpmax7 (3)

m:

where Ry, is disk radius, N is the length of the polymer and 4 is the area. The radius
of gyration R, can be expressed as
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Fig. 12. Average radius of gyration of polymers in a 2-D melt. The scaling R, o< N'/? predicted both for
segregated compact disks and random walks, is apparent when Ré is divided by chain length N. (a) Shows
that the N dependence becomes very weak. (1 ¢ =0.65; u ¢ =0.48). (b) Shows the concentration depen-
dence (1 N = 200; u N = 333, which nearly overlap). There are two points shown at concentration ¢ = 1.
The open circle (m) is an extrapolation of the measured values. The solid square (1) shows the value
expected for compact disks. The extrapolated value from the simulation is approximately 2.5 times higher.
The nearly horizontal line shows the values expected from a random walk. It varies slightly with density.
The line is approximately 2.5 times higher than the extrapolated value.
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Fig. 13. The shape factor S is plotted (linear axes) as a function of the same parameters as used in Fig. 9.
The shape factor measures directly polymer interpenetration. It is expected to be unity for completely
segregated disks and this is the lowest possible value. The increasing shape factor as a function of polymer
density indicates that significant interpenetration occurs and increases as a function of density.

1 Rmax
R = —/ Prmax? 2707 dr. 4
= @

From Egs. (3) and (4) it follows that for compact disk
R; 1

= =0.21. 5
N znpmax ( )

For random walks the radius of gyration can be written as R, = v/N¢, where ¢ is the
root mean square distance traveled in an elementary step. Thus,
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Ry _

ﬁ:O':P1+2P\/§, (6)
where P, is the probability of moving along a horizontal or vertical lattice direction
and P is the probability of moving along diagonals. These probabilities were cal-
culated during the simulations and are weak functions of the density. At low den-
sities 6 ~ 1.4 while at the highest densities we studied o> ~ 1.3. From Fig. 12(b) we
see that the measured extrapolated Rg /N is distinct from the values expected for
either compact disk or random walk. Remarkably, it lies half-way (on a logarithmic
scale) between the two expected values.

In order to make further progress there is need for a measure of the polymer
properties that can clearly distinguish the degree of polymer interpenetration. For
this we compare the area to the perimeter of the region occupied by the polymer. The
shape factor S is defined to be the ratio of the perimeter squared of the polymer
divided by its area, S = P?/4. S should be much smaller for segregated disks than for
interpenetrating polymers. To measure S, we use an algorithm [16] that fills in the
area surrounding each polymers until all space is filled. Then the perimeter of the
space associated with each polymer is counted, as is the area.

We normalize the shape factor plotted in Fig. 13 so that the minimum possible
value is unity. The shape factor increases as a function of density implying polymer
interpenetration. Fig. 14 shows a frame taken from a simulation of polymers of
length N = 333 at the highest density ¢ = 0.65. Distinct individual polymers are
highlighted in each of the six illustrations. There is clear indication that the poly-
mers are sometimes compact and sometimes expanded. When time lapse pictures
are taken it can be seen that individual polymers change from expanded to con-
tracted.

In conclusion, contrary to expectations that polymers will segregate into compact
disks at high densities, the chains adopt both compact and expanded conformations.

8. Application to polymer collapse

The flexible polymer coil to globule transition (polymer collapse) is an extensively
investigated and fundamental aspect of the properties of polymers in dilute solution.
When polymers are dissolved in liquids there are essentially two possible structures:
either the polymer collapses into a compact structure, or the polymer is expanded.
The transition (collapse) is driven by changes in the affinity of the monomers for
each other compared to their affinity for the solvent. A polymer in its expanded state
is said to be in a good solvent. A compact polymer is said to be in a poor solvent.
The transition is called the -point. When a protein is folded and unfolded in so-
lution it is crossing the line between compact and expanded structures. DNA also
undergoes a transition between compact and expanded forms in order to allow
transcription or replication.

Analytic arguments as well as Monte Carlo simulations have investigated the
equilibrium structure of various model polymers as a function of the effective
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Fig. 14. A frame “snapshot” from a 2-D melt simulation on the MP-1 parallel computer showing poly-
mers of length 333 at a density of 0.65. Each picture highlights a distinct polymer. Contrary to expecta-
tions that polymers will segregate into compact disks at high densities, the chains adopt both compact and
expanded conformations. This is consistent with the analysis of averaged quantities described in Figs. 12
and 13.

temperature or relative solvent affinity through the transition [4]. The study of
simple model polymer collapse is not relevant to the problem of determining the
end structure in biopolymer collapse — what is generally considered the protein
folding problem. However, the kinetics of the coil to globule transition may be
relevant according to the molten globule concept [10]. According to this picture, in
its most general form, initially a protein collapses into a globule which then reor-
ganizes into a specific structure. It is the initial stage of the collapse that may
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be modeled by the kinetics of the coil to globule transition. Despite the extensive
investigations of the equilibrium properties of collapse, little is known about ki-
netics of this transition.

The collapse of a polymer is controlled by the difference of the temperature
AT = 0 — T from the 6-point temperature. The lower the temperature the more rapid
the collapse, and the more important the kinetic effects. The process of collapse
involves many encounters between monomers that form weak bonds to each other,
like hydrogen bonds. Some of these might break free and others form instead. The
larger AT is, the smaller is the probability that a bond will break. The bonds that are
formed build larger and larger aggregates. The local formation and breaking of a
single bond is less relevant than the formation of larger clusters. The possibility of
breaking up a cluster becomes less likely for large clusters because the total bonding
energy is large. This means that we can treat the kinetics of collapse by considering
irreversible bonding without bond breaking. More formally, it is possible to prove*
that the parameter that actually controls the collapse for long polymers is ATN'/2,
Thus we can always think about the process of collapse as if it occurs for large values
of AT, and bond breaking is unimportant.

We investigate the behavior of polymer collapse using the two-space algorithm
[1,5,11-13]. Starting from an initial expanded (equilibrium) conformation, polymer
collapse is simulated by eliminating the excluded volume constraint. We discuss
below why excluded volume should not be essential during collapse, even though it is
necessary for the original polymer conformation. Once the excluded volume con-
straint is eliminated, the usual monomer Monte Carlo steps are taken. Monomers
are no longer prevented from entering the neighborhood of another monomer,
however, they continue to be required not to leave any neighbors behind. This en-
ables monomers of the same type (odd or even) to move on top of each other. Once a
monomer moves onto another monomer they loose separate identity and become an
aggregate that moves as a unit. We keep track of the mass M of an aggregate, which
is the total number of monomers that reside on the same site. A diffusion constant is
assigned to the aggregate according to D ~ 1/R ~ 1/M"?. This is the diffusion
constant according to hydrodynamics (Stokes’ law) in 3-D, and in 2-D this is the
diffusion constant of a polymer trapped at a fluid interface. By incorporating Stokes’
law into the collapse we have incorporated the primary effect of hydrodynamics
when there are aggregates present. We implement the diffusion constant by con-
trolling the probability of making a hop when an aggregate is selected to move. We
choose the time scale by setting to one the probability that a single monomer will
move when chosen.

The polymer dynamics are then simulated by selecting an aggregate at random
(monomers are included as aggregates of mass 1) and moving the aggregate in one of
four compass directions with a probability given by the diffusion constant and only if
the connectivity constraint allows — the aggregate does not leave any neighbors
behind. In order to move the aggregate with a probability given by its diffusion
constant, a random number ranging between zero and one is compared with the
diffusion constant. The monomer is moved only if the random number is smaller
than the diffusion constant.
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Time is normally measured in a Monte Carlo simulation by choosing N
monomers to move in one time interval. During collapse, a time interval consists
of choosing a number of aggregates that is equal to the number of remaining
aggregates. Since the number of aggregates can change during the time interval,
it is arbitrarily taken to be the number at the end of the time interval. When
the number of moves exceeds the number of aggregates a new time interval is
started.

A sequence of frames from a simulation in 2-D is shown in Fig. 15. Most striking
in these pictures is that the ends of the polymer have a special role in the collapse.
The ends diffuse along the contour of the polymer eating up monomers and smaller
aggregates until the two end aggregates meet in the middle. Along the contour, away
from the ends, the polymer becomes progressively smoother. The polymer becomes
more and more like a dumbbell. We call this process end-dominated collapse. A
similar behavior has been confirmed for various other abstract polymer models that
include excluded volume in 3-D [1,12].

To understand these observations we consider qualitatively the process of
polymer collapse. We realize that encounters of monomers that are distant from
each other along the contour of the chain are unlikely because they are also,
on average, distant from each other in space. We can therefore consider aggre-
gation as primarily a local process, where a monomer forms an aggregate with
neighboring monomers along the contour. This aggregation is, however, inhibited
by the existing bonds. Aggregation occurs when two monomers that are near
each other in space move close enough to form a new bond. The easiest aggre-
gation would occur if a monomer could move to aggregate with one of its
neighbors, however the neighbor on the other side prevents this, because stepping
away from the other neighbor would break an existing bond. Without curvature
in the chain, the monomer is unable to move to aggregate with either neighbor,
because it is bonded to the neighbor on the other side. If there is some curvature,
then monomers can aggregate. The aggregation would cause the curvature to
decrease and further aggregation becomes more difficult. The same argument
applies if we consider a monomer moving to bond to its second or third
neighbors along the contour. These problems do not occur at the ends of the
polymer. The ends, because they have only one neighbor, can move to aggregate
with the monomers that are near them along the contour. Thus, during collapse
the aggregates at the ends grow more rapidly than aggregates along the contour,
and eventually the polymer looks like a dumbbell. This is what was found in the
simulations.

In order to understand this more fully we develop an analytic (scaling) theory that
compares the growth of the end mass M;(¢), with that of the average aggregate mass
not including the ends M(¢). In a small time interval each end aggregate has a
probability proportional to its diffusion constant Dy(¢) of collecting more mass by
moving toward and accreting its immediate neighbor aggregate. This neighbor has
an average mass M(¢) and is a distance a away, where a is approximately a mono-
mer—-monomer distance and does not depend on time. Thus, on average My(¢) grows
according to
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Fig. 15. Frames ‘snapshots’ of the collapse of a single polymer of length N =500 monomers in 2-D. Each
aggregate is shown by a dot. The area of the dot is the mass of the aggregate. This does not reflect the
excluded volume of the aggregates which is zero during collapse. Successive snapshots are taken at in-
tervals of 2000 time steps — approximately 1/6 of the collapse time. The initial configuration is at the top.
The pictures demonstrate the end dominated collapse process where the ends diffuse along the contour of
the polymer accreting small aggregates.
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dM()(t)

o M(t)Dy(t)/a*. (7)
We assume that the two quantities M(¢z) and My (¢) follow a power law scaling
Mo(t) o< £, M(t) < £ (8)

Inserting this and Dy(r) o< 1/My(¢)"* into Eq. (7), we ignore prefactors and set the
exponents on both sides equal. Solving for sy we obtain

so=(s+1)d/(d+1). 9)

The two exponents are equal when s = 5o = d. We will find that s is much smaller
than d, and therefore sy is much larger than s — the end mass grows faster than the
mass along the contour.

The value of s may be estimated by considering collapse of a polymer with fixed
ends at their average equilibrium separation. This removes the dynamics of the end
motion from the problem. The collapse of this fixed end polymer would result in a
straight rod of aggregates with an average mass M = N/R, where N is the number of
original monomers and R ~ N" is the average end-to-end distance of the original
polymer, which is also the length of the resulting rod. Since we have eliminated the
special effects of the ends, the time over which the collapse occurs can be approxi-
mated roughly by the usual dynamics of a polymer with t ~ N?, where z = 3v when
hydrodynamics is included (Zimm relaxation), or z = 2v + 1 without hydrodynamics
(Rouse relaxation). We think about the fixed-end polymer collapse as a simple model
for the collapse of the original polymer along the contour away from the ends. We
are thus assuming that the polymer can be approximated locally by polymer seg-
ments whose ends are pinned. Over time, progressively longer segments are able to
relax to rods. The average mass of the aggregates at a particular time 7 is then de-
termined by the maximal segment length N(¢) ~ ¢'/* that relaxes by time z. This
means that

M(t) ~ N(&)/R(t) ~ N(t)' ™" ~ 177/% (10)
or

s=(1-=v)/z (11)

The value of s obtained from this argument depends on the value of v and z, but for
all reasonable values of these exponents, it is small. For example, for v= 0.6 and
z=2v+ 1 (Rouse dynamics) we obtain s = 0.18, for z = 3v (Zimm dynamics) we
obtain s = 0.22. Using Eq. (9) we also find that sy is much larger than s.

We analyze the simulations to compare with the scaling argument. The results,
shown in Fig. 16, were obtained in both 2-D and 3-D. In 2-D for polymers of length
N = 1000 (averaged over 500 samples), and N =500 (1000 samples). In 3-D for
polymers of length N =500 (500 samples), and N =250 (1000 samples). It is apparent
from the figure that the collapse of longer polymers follows precisely the same curves
as the collapse of the shorter polymers but extend the curves to longer times. This is
consistent with the picture of end-dominated collapse, where the only effect of a
longer polymer is increasing the length of time till the end aggregates meet in the
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Fig. 16. Plot of the time evolution during polymer collapse of the average total mass of the polymer ends
M, (t) and of the average mass M (¢) of aggregates not including the ends. (a) Shows collapse in 2-D of
polymers of length N = 1000 (averaged over 500 samples), and N = 500 (1000 samples). (b) Shows col-
lapse in 3-D of polymers of length N = 500 (500 samples), and N = 250 (1000 samples). Longer polymers
follow the collapse of the shorter polymers but extend the curves to longer times. This is consistent with the
picture of end-dominated collapse, where the only effect of a longer polymer is increasing the length of
time till the end aggregates meet in the middle. Scaling exponents fitted to are given in II and discussed in
the text.

middle. Both M(¢) and M,(¢) follow power law scaling. Exponents are given in
Table 1. The value of s obtained from the simulation is in qualitative but not
quantitative agreement with the analytic argument. Since our derivation of s relied
upon additional simplifying assumptions and depends upon v and z we can accept
the disagreement without abandoning the basic argument. The 3-D result would be
in agreement if we used v = 0.5 and z = 3v but this must be a coincidence. The re-
lationship given by Eq. (9) between s, and s is satisfied, and sy is larger than s.
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Table 1
Power law exponents for the scaling of end mass (sy) and mass along the contour (s) during polymer
collapse®

s S0 so(s) (Eq. (9)) So — So(s)
2-D 0.154 +0.001 0.7734 + 0.0006 0.7695 + 0.0006 0.004 £ 0.001 (0.5%)
3-D 0.337 4 0.002 0.982 £ 0.005 1.003 £ 0.002 —0.021 £ 0.005 (2%)

#The first column gives the dimension of space. The second and third columns are fitted to the simulation
results between the dashed lines in Fig. 16. Fits were chosen to minimize standard errors. Errors given are
only statistical — they reflect the standard deviation of the simulation data around the fitted line. The
simulation results are compared to the scaling relation, Eq. (9), in columns four and five.

In our simulations, during polymer collapse, we neglected excluded volume. We
know that excluded volume is relevant to the initial polymer conformation in good
solvent. Moreover, excluded volume is also relevant to the final collapsed state of the
polymer — without excluded volume the polymer collapses to a point. However,
excluded volume does not enter in the scaling argument leading to the relationship
between s and so. This relationship depends only on the dimension d of the space.
Thus, we do not expect excluded volume to affect qualitatively the behavior of
collapse. On the other hand, the value of s in Eq. (11) is dependent on the values of
the exponents v and z. This means that we can expect the precise values of s and s, to
be somewhat more sensitive to the presence of an excluded volume. Simulations with
other model polymers confirm that the excluded volume affects the value of the
exponents (in 3-D s changes from about 1/3 to 1/2, and s, from 1.0 to 1.1), but not
the overall behavior.

We can analyze our results to give the scaling of the collapse time t.(N). This is
the time that passes until each end aggregates has half of the mass of the polymer

My(t.(N)) < N. (12)
Substituting Eq. (8) we obtain
7.(N) ~ N5, (13)

From the simulations we find that 1/sy = 1.293 £ 0.001 in 2-D and 1.018 + 0.005 in
3-D (errors are statistical). Thus the collapse time is predicted to scale linearly with
polymer length in 3-D. This indicates that kinetic effects through end-aggregation
accelerate the collapse from the usual relaxation time scaling of t(N) ~ N?, where
z~ 2.

We can extend these arguments to consider the behavior of polymer collapse away
from the polymer ends along the polymer contour [5]. A completely straight segment
of polymer does not allow aggregation because no monomer can move to bond with
another monomer. In contrast, highly curved regions are more flexible and mono-
mers in these regions may aggregate. Aggregation in a curved region reduces the
contour length and the polymer becomes straighter, smoothing the rough fractal
polymer structure. We therefore expect that the scaling exponent will increase over
time. At long enough times the scaling will approach that of a straight line (» ~ /).
However, this smoothing occurs first at the shortest length scales. In effect the
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polymer structure becomes consistent with a progressively longer persistence length.
Assuming scaling, we anticipate that the polymer end-to-end distance for a polymer
segment away from the ends of contour length / will follow the dynamic scaling
formula

r=1f(t/F). (14)

The universal function f(x) is a constant for large values of its argument (long
times), so that » ~ I and scales as x!'~*)/% for small values of its argument, so that
r ~ [" at t — 0. The characteristic time at which crossover occurs is given by © ~ /7,
The dynamic exponent z is assumed to be consistent with conventional Zimm re-
laxation, z = 3v Finally, we can also rewrite this scaling relation in terms of the
number of monomers #z in a polymer segment. Since the average mass along the
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Fig. 17. Plot of the scaling exponent dInr/dIn/ where r is the internal polymer segment end-to-end
distance and /, is the segment contour length in both (a) two dimensions (2-D), for =0, 25, 50, 100, 200,
400, 800, 1600 and (b) three dimensions (3-D), with =0, 25, 50, 100, 200, 400, 800. In both cases the
polymer contained 500 monomers and results were averaged over 200 collapses. Slopes are average slopes
over segments of length of 20.
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Fig. 18. Plot of the rescaled end-to-end polymer segment distance, »// as a function of the rescaled time,
t/IFd and 3-D are shown. The coincidence of the curves is consistent with validity of the universal scaling
relationship, Eq. (1).

contour is M ~ n/l and M follows power law scaling M ~ ¢ — we substitute / ~ nt™*
in Eq. (14) to obtain r(n,t).

Fig. 17 shows the derivative, obtained from finite differences, of contour length (/)
versus end-to-end distance (r) for both 2-D and 3-D simulations, as a function of
time for different segment contour lengths. For all segment lengths the derivative
starts at approximately v, consistent with » ~ [* for a self avoiding random walk. As
time progresses the polymer becomes smooth resulting in a slope that approaches 1
as the collapse proceeds. The rate of collapse becomes progressively slower as / in-
creases. The scaling relation, Eq. (14), predicts that the relaxation time will scale with
[ as . Fig. 18 shows the data following rescaling. r/lis plotted against the rescaled
time, ¢//7. The generally good coincidence of the different curves confirms that the
simulation obeys Eq. (14). An attempt to use an asymptotic scaling exponent, r ~ [*,
with u = 0.95, led to a visibly poorer fit, as did small variations in the exponent z.

9. Implications for protein folding

Can we relate our discussion of polymer collapse to the problem of protein
folding? Unlike a general uniform collapse of the polymer, the end-dominated col-
lapse proceeds by an orderly process of sequential monomer encounters. These en-
counters build up the aggregate compact structure (globule) in a manner that is not
entirely random. A consequence of this orderly kinetic process is that the resulting
globules are selected from a limited subset of all possible globules. This may simplify
the process of arriving at a specific folded protein structure. End-dominated collapse
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is consistent with the molten globule model for the kinetics of folding. It suggests
that there is a fast initial process of forming a compact globule followed by a re-
arrangement of the globule to form the final folded protein. The rearrangement
process should take more time than the collapse. Unlike the collapse, this process
requires bonded segments of polymer to move around each other, which is a much
more difficult dynamic process. The significance of the end-dominated collapse is
that by preselecting the initial compact globule, the rearrangement process is
shortened and does not necessarily explore all possible compact conformations of
the protein before settling in the desired state.

It is not easy to see what the precise nature of the globules that are formed by end-
dominated collapse. However, we can note that they are likely to be formed out of
two parts corresponding to the aggregate formed from one end, and the aggregate
formed from the other. A more subtle feature of this process is that the globule is
likely to contain fewer knots than would be generally found in a globule. This is
because the diffusive end motion tends to unknot the polymer, since the ends are
passed through any knots rather than closing or tightening them. To discuss this
formally would require defining knots in a polymer with free ends, which is feasible
but tricky.

We note that it has yet to be demonstrated experimentally that kinetics plays a
significant role in protein folding, or in DNA aggregation. There is an interesting
consequence of end-dominated collapse that has relevance to experimental tests.
End-dominated collapse represents a significant departure from the usual rule of
thumb that linear and ring polymer dynamics are similar. The simulations indicate
that ring collapse should be significantly slower than linear polymer collapse. This is
one of the ways that the predictions may be tested by experiment.

10. Conclusions

We have designed and tested a number of CA algorithms for parallel polymer
simulation. One of these, the two-space algorithm, is a special algorithm that par-
titions the polymer into two spaces. Since interactions and explicit constraints act
between the spaces, all elements within a space can be updated in parallel. This is
particularly useful for treatment of the excluded volume interactions. Other ad-
vantages in implementation of this simple algorithm were discussed.

Scaling behavior of polymers in the two-space algorithm were tested and con-
firmed to satisfy the known scaling of long polymers. It was then applied to study the
behavior of high density polymer melts in 2-D and polymer collapse. In both cases
important new results are reported.

The behavior of polymers in 2-D melts, is shown to consist of both expanded and
compact configurations. This is counter to the conventional wisdom which assumes
that polymers will be compact in 2-D melts.

In the study of polymer collapse it is shown that the polymer ends play a sur-
prisingly important role. Because they can aggregate more easily than other parts of
the chain, the ends form rapidly growing aggregates that diffuse along the contour
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and accrete monomers and other smaller aggregates. The orderly process of se-
quential monomer encounters suggests the compact structure (globule) is formed in a
manner that is not entirely random. In considering the role of the kinetics of collapse
in protein folding it can be suggested from these results that the orderly kinetic
process may simplify the process of reliably arriving at a specific folded protein
structure.
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